A 5' stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA.

نویسندگان

  • Gustav Hambraeus
  • Kaisa Karhumaa
  • Blanka Rutberg
چکیده

The Bacillus subtilis aprE leader is a determinant of extreme mRNA stability. The authors examined what properties of the aprE leader confer stability on an mRNA. The secondary structure of the aprE leader mRNA was analysed in vitro and in vivo, and mutations were introduced into different domains of an aprE leader-lacZ fusion. The half-lives of the corresponding transcripts were determined and beta-galactosidase activities were measured. Removal of a stem-loop structure at the 5' end or diminishing the strength of the RBS reduced the half-lives from more than 25 min to about 5 min. Interfering with translation by abolishing the start codon or creating an early stop codon had no or little effect on mRNA stability. The authors conclude that a 5' stem-loop and binding of ribosomes are necessary for the stability of aprE leader mRNA. The present results, together with a number of other data, suggest that translation of a B. subtilis mRNA is generally not important for its stability; the situation seems different in Escherichia coli. It is further concluded that the calculated strength of a B. subtilis RBS cannot be used to predict the stability of the corresponding transcript.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced mRNA stability in Bacillus subtilis.

We have investigated the induced stability of mRNA encoded by the ermC gene in Bacillus subtilis. Induction of ermC gene expression by erythromycin is known to occur at the translational level. We show that this induction is accompanied by an increase in ermC mRNA half-life from about 2 min to about 40 min. Induced stabilization of ermC mRNA occurs independently of induced translation. The regu...

متن کامل

Analysis of the regulatory sequences needed for induction of the chloramphenicol acetyltransferase gene cat-86 by chloramphenicol and amicetin.

Induction of the chloramphenicol acetyltransferase gene cat-86 in Bacillus subtilis results from the activation of translation of cat-86 mRNA. The inducers, chloramphenicol and amicetin, are thought to enable ribosomes to destabilize a stem-loop structure in cat-86 mRNA that sequesters the ribosome binding site for the cat-86 coding sequence, designated RBS-3. The region of cat-86 mRNA which is...

متن کامل

Chloramphenicol induction of cat-86 requires ribosome stalling at a specific site in the leader.

The plasmid gene cat-86 specifies chloramphenicol-inducible chloramphenicol acetyltransferase in Bacillus subtilis. Induction by the antibiotic is primarily due to activation of the translation of cat-86-encoded mRNA. It has been suggested that the inducer stalls ribosomes at a discrete location in the leader region of cat-86 mRNA, which causes the destabilization of a downstream RNA secondary ...

متن کامل

A variation of the translation attenuation model can explain the inducible regulation of the pBC16 tetracycline resistance gene in Bacillus subtilis.

Expression of the tet resistance gene from plasmid pBC16 is induced by the antibiotic tetracycline, and induction is independent of the native promoter for the gene. The nucleotide sequence at the 5' end of the tet mRNA (the leader region) is predicted to assume a complex secondary structure that sequesters the ribosome binding site for the tet gene. A spontaneous, constitutively expressed tet ...

متن کامل

RNA processing and degradation in Bacillus subtilis.

This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 148 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2002